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Abstract

This paper introduces a model with regime switching, which is driven by an
autoregressive latent factor correlated with the innovation to the observed time
series. In our model, the mean or volatility process is switched between two
regimes, depending upon whether the underlying autoregressive latent factor
takes values above or below some threshold level. If the latent factor becomes
exogenous, our model reduces to the conventional markov switching model, and
therefore, our model may be regarded as an extended markov switching model
allowing for endogeneity in regime switching. Our model is estimated by the
maximum likelihood method using a newly developed modified markov switching
filter. For both mean and volatility models that are frequently analyzed in
markov switching framework, we demonstrate that the presence of endogeneity
in regime switching is indeed strong and ubiquitous.
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1 Introduction

Regime switching models have been used extensively. In most of these models, two regimes,

designated as high and low states of an economy, are introduced with a state process de-

termining one of the regimes to take place in each period. The bi-valued state process is

typically modeled as a markov chain. The autoregressive model with this type of markov

switching in the mean was first considered by Hamilton (1989), which was further ana-

lyzed in Kim (1994). Subsequently, the markov switching has been introduced in more

general class of models such as regression models and volatility models by numerous au-

thors. Moreover, various statistical properties of the model have been studied by Hansen

(1992), Hamilton (1996), Garcia (1998), Timmermann (2000) and Cho and White (2007),

among others. For a nice overview and some extensions of the related literature, the reader

is referred to the monograph by Kim and Nelson (1999). Markov-switching models with

endogenous explanatory variables have also been considered recently by Kim (2004, 2009).

Though the markov switching models have been used and proven to be quite useful in

a wide range of contexts, they have some drawbacks. Most importantly, with a very few
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innovation in the model. A current shock to the observed time series therefore affects the

regime switching in the next period. Moreover, we allow the autoregressive latent factor to

have a unit root and accommodate a strongly persistent regime change. Consequently, our

approach remedies both of the aforementioned shortcomings in the conventional markov

switching model, and yields a broad class of models with endogenous and possibly non-

stationary regime changes. Moreover, it also provides an extracted autoregressive latent

factor, which can be used to investigate the dynamic interactions of the mean or volatility

process of a given time series with the levels of other observed time series. Our model can

be estimated by a modified markov switching filter that we develop in the paper.

If the autoregressive latent factor is exogenous, our model reduces to the conventional

markov switching model. Indeed, we show in this case that the conventional two state

markov switching model specified by two transition probabilities has the exact one-to-one

correspondence with our model specified by the autoregressive coefficient of the latent factor

and the threshold level. Therefore, we may always find our model with an exogenous autore-

gressive latent factor corresponding to a conventional two state markov switching model.

They are observationally equivalent and have exactly the same likelihood. Consequently,

our model may be regarded as a natural extension of the conventional markov switching

model, with the extension made to relax some of its important restrictive features. In the

presence of endogeneity, however, our model diverges sharply from the conventional markov

switching model. In particular, we show in the paper that the state process in our model

is given by a markov process jointly with the underlying time series, and the transition of

state systematically interacts with the realizations of underlying time series.

Our paper is closely related to Kim et al. (2008), which considers a regime switching

model driven by an endogenous i.i.d. latent factor with the threshold level determined by

the previous state and possibly lagged values of the underlying time series.3 Our model

has some important advantages over their model. First, they require the state transition to

be dependent only on its immediate past, and this is in contrast with our approach which

allows for a high order markov structure.4 Second, the innovation in our model is set to be

correlated with the state variable in the next period, in contrast to their model where it is

assumed to be contemporaneously correlated with the state variable in the current period.

We believe that the endogeneity of regime switching is more appropriately structured in our

approach. In fact, the presence of contemporaneous correlation between the state variable

and the innovation of the error term makes their regression model seriously misspecified from

3In their model, as well as in our model, the threshold level is also allowed to be dependent upon other
exogenous covariates.

4This is a serious restriction. For instance, their model cannot be used directly to fit a mean switching
AR(p) model with p > 1, including the original Hamilton’s model.
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the conventional point of view.5 Finally, we may easily allow for nonstationary transition

by letting our autoregressive latent factor have a unit root, whereas their model strictly

requires stationarity in transition.

To evaluate the performance of our model and estimation procedure, we conduct an

extensive set of simulations. Our simulation results can be summarized as follows. First,

the endogeneity of regime switching, if ignored, has a significant deleterious effect on the

estimates of model parameters and transition probabilities. This is more so for the mean

model than the volatility model, and for the models with stationary latent factors relative to

the models with nonstationary latent factors. Second, the presence of endogeneity, if taken

into account properly, improves the efficiency of parameter estimates and the precision

of estimated transition probabilities. This is because the presence of endogeneity helps

to extract more information in the data on the latent states and their transitions. The

efficiency gain and the precision enhancement are substantial in some cases, particularly

when the latent factor is stationary and the endogeneity is strong. Finally, the likelihood

ratio tests for endogeneity work reasonably well in all cases we consider. Though they tend
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other hand, the movement of the state dependent mean at the second level would entail

an unstabilizing effect on the observed time series. For both mean and volatility models,

the inferred probabilities appear to be much more accurately predicting the true states of

changing regimes if we allow for endogeneity in regime switching.

The rest of the paper is organized as follows. In Section 2, we introduce our model

and compare it with the conventional markov switching model. In particular, we show

that our model becomes observationally equivalent to the conventional markov switching

model, if endogeneity is not present. Section 3 explains how to estimate our model using a

modified markov switching filter. The markov property of the state process is also discussed

in detail. Section 4 reports our simulation studies, which evaluate the performance of our

model relative to the conventional markov switching model. The empirical illustrations in

Section 5 consist of the analysis of the US GDP growth rates and the NYSE/AMEX index

returns using respectively our mean and volatility models. Section 6 concludes the paper,

and Appendix collects the proofs of theorems in the paper and additional figures.

A word on notation. W(m)-2.99886(43.001100146(s)998)-6(p)7respectively byϕ and Φ the density and distribution

function of standard 0146(s)99rmal distribution. The equality in distribution is written as =d.

Moreover, we use p(·) or p(·|·
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level, or more compactly,

πt = π(wt) = π1{wt < τ}+ π̄1{wt ≥ τ}, (2)

where τ and (π, π̄) are parameters, π : R → {π, π̄}, and 1{·} is the indicator function. In

subsequent discussions of our models, we interpret two events {wt < τ} and {wt ≥ τ} as

two regimes that are switched by the realized value of the latent factor (wt) and the level

τ of threshold, and call π the level function of state dependent parameter (πt).

To compare our model with the conventional markov switching model, we may set

st = 1{wt ≥ τ}, (3)

so that we have

πt = π(st) = π(1− st) + π̄st

exactly as in the conventional markov switching model. The state process (st) represents

low or high state depending upon whether it takes value 0 or 1. The conventional markov

switching model simply assumes that (st) is a markov chain taking value either 0 or 1,

whereas our approach introduces an autoregressive latent factor (wt) to define the state

process (st). In the conventional markov switching model, (st) is assumed to be completely

independent of the observed time series. In contrast, it will be allowed in our approach to

be endogenous, which appears to be much more realistic in a wide range of models used in

practical applications.

For identification of the level function π in (2), we need to assume that π < π̄. To

see this, note that (vt) has the same distribution as (−vt), and that our level function is

invariant with respect to the joint transformation w 7→ −w, τ 7→ −τ and (π, π̄) 7→ (π̄, π).

Recall also that, to achieve identification of our level function, we must restrict the variance

of the innovations (vt) to be unity. This is because, for any constant c > 0, (cvt) generates

(cwt) and our level function remains unchanged under the joint transformation w 7→ cw and

τ 7→ cτ in scale. If α = 1 and the latent factor (wt) becomes a random walk, we have an

additional issue of joint identification for the initial value w0 of (wt) and the threshold level

τ . In this case, we have wt = w0 +
∑t

i=1 vi for all t and the transformation w0 7→ w0 + c for

any constant c yields (wt + c) in place of (wt). However, our level function does not change

under the joint transformation w 7→ w + c and τ 7→ τ + c in location. Therefore, we set

w0 = 0 in this case. On the other hand, the identification problem of the initial value w0

of (wt) does not arise if we assume |α| < 1. Under this assumption, the latent factor (wt)



6

becomes asymptotically stationary, and we set

w0 =d N

(

0,
1

1− α2

)

to make it a strictly stationary process.

We specify our model as

yt = m(xt, yt−1, . . . , yt−k, wt, . . . , wt−k) + σ(xt, wt, . . . , wt−k)ut

= m(xt, yt−1, . . . , yt−k, st, . . . , st−k) + σ(xt, st, . . . , st−k)ut (4)

with mean and volatility functions m and σ respectively, where (xt) is exogenous and (ut)

and (vt) in (1) are jointly i.i.d. as

(

ut

vt+1

)

=d N

((

0

0

)

,

(

1 ρ

ρ 1

))

(5)

with unknown parameter ρ.6 For the brevity of notation, we write

mt = m(xt, yt−1, . . . , yt−k, wt, . . . , wt−k) = m(xt, yt−1, . . . , yt−k, st, . . . , st−k) (6)

σt = σ(xt, wt, . . . , wt−k) = σ(xt, st, . . . , st−k), (7)

subsequently. Note thatmt and σt are conditional mean and volatility of the state dependent

variable (yt) given present and past values of latent factors wt, . . . , wt−k, as well as the

current values of exogenous variables xt and lagged endogenous variables yt−1, . . . , yt−k.
7

Our model (4) includes as special cases virtually all models considered in the literature.

In our simulations and empirical illustrations, we mainly consider the model

γ(L)
(

yt − µt

)

= σtut, (8)

where γ(z) = 1 − γ1z − · · · − γkz
k is a k-th order polynomial, µt = µ(wt) = µ(st) and

σt = σ(wt) = σ(st) are respectively the state dependent mean and volatility of (yt). We

may easily see that the model introduced in (8) is a special case of our general model (4).

The model describes an autoregressive process with conditional mean and volatility that

are state dependent. It is exactly the same as the conventional markov switching model

6We may equivalently define the dynamics of (wt) as wt = αwt−1 + ρut−1 +
√

1− ρ2vt, where (ut) and
(vt) are independent i.i.d. standard normals.

7The endogenous latent factor (wt) may naturally be regarded as an economic fundamental determining
the regimes of an economy.
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considered by Hamilton (1989) and many others, except that the states in our model (8)

are determined by an endogenous latent autoregressive factor (wt) and the level function π

specified as in (1) and (2), respectively. In fact, it turns out that if we set ρ = 0, together

with |α| < 1, our model in (8) becomes observationally equivalent to the conventional

markov switching model, and we may represent it as the standard regime switching model

driven by an exogenous two state markov chain. This is shown below.

The model given in (8) may therefore be viewed as an extension of the conventional

autoregressive markov switching model, which allows in particular for endogeneity and

nonstationarity in regime changes. The autoregressive parameter α of the latent factor

(wt) in (1) controls the persistency of regime changes. In particular, if α = 1, the regime

change driven by (wt) becomes nonstationary, and such a specification may be useful in

describing regime changes that are highly persistent. On the other hand, the parameter ρ

in the joint distribution (5) of the current model innovation ut and the next period shock

vt+1 to the latent factor determines the endogeneity of regime changes. As ρ approaches to

unity in modulus, the endogeneity of regime change driven by (wt) becomes stronger, i.e.,

the determination of the regime in time t+1 is more strongly influenced by the realization

of innovation (ut) at time t. We observe that ρ is significantly different from zero both in

mean and volatility models for many economic and financial time series including the GDP

growth rates and stock returns we analyze for our empirical illustrations in the paper.

The interpretation of endogeneity parameter ρ, especially its sign, is quite straightfor-

ward for our volatility model. If ρ < 0, the innovation ut in the level of yt at time t becomes

negatively correlated with the volatility σt+1 of yt+1 at time t + 1. This implies that a

negative shock to (yt) in the current period would entail an increase in volatility in the next

period. This is often referred to as the leverage effect, if (yt) is used to model returns from

a financial asset. See, e.g., Yu (2005) for more discussions on the econometric modeling of

leverage effect in volatility model for financial asset returns. Of course, ρ > 0 means that

there is an anti-leverage effect in the model.

For the mean model, the sign of ρ has a more subtle effect on the sample path of the

observed time series (yt). If the lag polynomial γ(z) satisfies the stationarity condition, (yt)

becomes stationary. In this case, (yt) reverts to its state dependent mean (µt), as well as

to its global mean Eyt. This is true for both cases of ρ < 0 and ρ > 0. The mean reverting

behavior of (yt), however, differs depending upon whether ρ < 0 or ρ > 0. If ρ < 0, a

positive realization of ut at time t increases the probability of having low regime in the

state dependent mean µt+1 of yt+1 at time t + 1, and in this sense, the state dependent

mean (µt) of the observed time series (yt) is also reverting. Therefore, the mean reversion

of (yt) takes place in two distinct levels: the reversion of (yt) to its state dependent mean
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(µt), and the movement of (µt) to offset the effect of a shock to (yt). This would not be

the case if ρ > 0. In this case, the movement of (µt) at the second level would entail an

unstabilizing effect on (yt). Furthermore, the regime switching is more likely to happen for

ρ > 0 if (yt) is between the two state dependent means, whereas it is so for ρ < 0 if (yt) is

outside of the two state dependent means. Therefore, we may expect that regime switching

becomes relatively more conspicuous if ρ < 0, compared with the case ρ > 0.

Kim et al. (2008) consider a regression model similar to ours in (4), yet they specify

the state dependent regression coefficients (βt) in their model as being dependent only on

the current state variable (st) and their model is not directly applicable for model (8) with

k ≥ 1. In their model, the state process is defined as st = 1{vt ≥ πt−1}, where (vt) is

specified simply as a sequence of i.i.d. latent random variables that is contemporaneously

correlated with innovation (ut) in regression error (σtut).
8 Though their state process (st)

is endogenous, it is strictly restricted to be first order markovian and stationary as in

the conventional markov switching model. Furthermore, in their approach, (ut) is jointly

determined with (st) for each time t. The presence of contemporaneous correlation between

(ut) and (st) entails undesirable consequences on their model: State dependent coefficients

(βt) of regressors are contemporaneously correlated with regression errors (σtut), in addition

to that regression errors (σtut) are serially correlated.9 Their regression model is therefore

seriously misspecified from the conventional point of view.

Our approach is different. In our model, the state process (st) is driven by an endogenous

autoregressive latent factor, instead of an independent and identically distributed sequence

of random variables. One important consequence of modeling the latent factor as an en-

dogenous autoregressive process is that (st) alone is no longer markovian: It is markovian

only jointly with the underlying time series (yt), and consequently, for our model in (8) the

conditional distribution of st is determined by the past observations of the state dependent

variable yt−i’s as well as the past states st−i’s for 1 ≤ i ≤ k+1 at any time t. This is shown

more explicitly in the next section. Furthermore, in our model, innovation (ut) affects the

transition of (st) only in the next period, and therefore, (st) becomes pre-determined in

this sense. Modeling endogeneity as in our model not only appears to be more realistic, but

also yields a model that is correctly specified as a conventional regression model. Note that

(mt) and (σt) become respectively the mean and volatility of (yt) in our model (4).

8For an easier comparison, we present their model using our notation. Their model also includes other
predetermined variables, which we ignore here to more effectively contrast their approach with ours. As we
explain in more detail later, our model may also easily accommodate the presence of other covariates.

9Note also that (σt) does not represent the conditional volatility of their error process (σtut), since (σt)
is contemporaneously correlated with (ut).
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2.2 Relationship with Conventional Markov Switching Model

Our model reduces to the conventional markov switching model when the underlying au-

toregressive latent factor is stationary and independent of the model innovation. This will

be explored below. In what follows, we assume

ρ = 0

to make our models more directly comparable to the conventional markov switching models,

and obtain the transition probabilities of the markovian state process (st) defined in (3).

In our approach, they are given as functions of the autoregressive coefficient α of the latent

factor and the level τ of threshold. Note that

P
{

st = 0
∣

∣wt−1

}

= P
{

wt < τ
∣

∣wt−1

}

= Φ(τ − αwt−1) (9)

P
{

�
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Figure 1: Contours of Transition Probabilities in (α, τ)-Plane
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Figure 2: Correspondence Between (α, τ) and
(

a(α, τ), b(α, τ)
)
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τ ≤ 0. Moreover, we have

at(τ) =

∫ τ/
√
t−1

−∞
Φ
(

τ − x
√
t− 1

)

ϕ(x)dx

Φ
(

τ/
√
t− 1

)

bt(τ) = 1−

∫ ∞

τ/
√
t−1

Φ
(

τ − x
√
t− 1

)

ϕ(x)dx

1− Φ
(

τ/
√
t− 1

)

for t ≥ 2.

The state process (st) is a markov chain with transition density p(st|st−1) in (12) which is

defined now with the transition probability to low state ω(st−1) given by

ω(st−1) =

[

(1− st−1)

∫ τ/
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where

p(x, y) =
1

2π
exp

(

−(1 + c2)x2 + 2cxy + y2

2

)

= N

(

0,

(

1 −c

−c 1 + c2

))

.

Therefore, the integrals can be solved, if bivariate normal distribution function is provided.

Note that
∫ ∞

a
Φ(b+ cx)ϕ(x)dx = M(−a, b,−c),

which can also be easily obtained, once we compute the integral in (14) for all a, b, c ∈ R.

3 Estimation

Our endogenous regime switching model (4) can be estimated by the maximum likelihood

method. For the maximum likelihood estimation of our model, we write the log-likelihood

function as

`(y1, . . . , yn) = log p(y1) +
n
∑

t=2

log p(yt|Ft−1) (15)

where Ft = σ
(

xt, (ys)s≤t

)

, i.e., the information given by xt, y1, . . . , yt for each t = 1, . . . , n.

Of course, the log-likelihood function includes a vector of unknown parameters θ ∈ Θ, say,

which specifies mt = m(xt, yt−1, . . . , yt−k, wt, . . . , wt−k) = m(xt, yt−1, . . . , yt−k, st, . . . , st−k)

and σt = σ(xt, wt, . . . , wt−k) = σ(xt, st, . . . , st−k). It is, however, suppressed for the sake of

notational brevity. The maximum likelihood estimator θ̂ of θ is given by

θ̂ = argmax
θ∈Θ

`(y1, . . . , yn)

as usual. For the model we consider in (8), θ consists of state dependent mean and volatil-

ity parameters, (µ, µ̄) and (σ, σ̄), as well as the threshold τ level, the autoregressive coeffi-

cient α of the latent factor, the correlation coefficient ρ, and the autoregressive coefficients

(γ1, . . . , γk).

To estimate our general switching model in (4) by the maximum likelihood method, we

develop a modified markov switching filter. The conventional markov switching filter is no

longer applicable, since the state process (st) defined in (3) for our model is not a markov

chain unless ρ = 0. To develop the modified markov switching filter that can be used to

estimate our model, we let

Φρ(x) = Φ
(

x/
√

1− ρ2
)

(16)

for |ρ| < 1. We have
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Theorem 3.1. Let |ρ| < 1. The bivariate process (st, yt) on {0, 1}×R is a (k+1)-st order

markov process, whose transition density with respect to the product of the counting and

Lebesgue measure is given by

p(st, yt|st−1, . . . , st−k−1, yt−1, . . . , yt−k−1)

= p(yt|st, . . . , st−k, yt−1, . . . , yt−k)p(st|st−1, . . . , st−k−1, yt−1, . . . , yt−k−1),

where

p(yt|st, . . . , st−k, yt−1, . . . , yt−k) = N
(

mt, σ
2
t

)

(17)

and

p(st|st−1, . . . , st−k−1, yt−1, . . . , yt−k−1)

= (1− st)ωρ(st−1, . . . , st−k−1, yt−1, . . . , yt−k−1)

+ st
[

1− ωρ(st−1, . . . , st−k−1, yt−1, . . . , yt−k−1)
]

(18)

with the transition probability ωρ of the endogenous state process (st) to low state. If |α| < 1,

ωρ is given by

ωρ(st−1, . . . , st−k−1, yt−1, . . . , yt−k−1)

=

[

(1−st−1)

∫ τ
√
1−α2

−∞
+st−1

∫ ∞

τ
√
1−α2

]

Φρ

(

τ−ρ
yt−1−mt−1

σt−1
− αx√

1− α2

)

ϕ(x)dx

(1− st−1)Φ(τ
√

1− α2) + st−1

[

1−Φ(τ
√

1− α2)
] ,

and, if α = 1, for t = 1, ωρ(s0) = Φ(τ) with P{s0 = 0} = 1 and P{s0 = 1} = 1 respectively

when τ > 0 and τ ≤ 0 and, for t ≥ 2,

ωρ(st−1, . . . , st−k−1, yt−1, . . . , yt−k−1)

=

[

(1−st−1)

∫ τ/
√
t−1

−∞
+st−1

∫ ∞

τ/
√
t−1

]

Φρ

(

τ−ρ
yt−1−mt−1

σt−1
−x

√
t− 1

)

ϕ(x)dx

(1− st−1)Φ(τ/
√
t− 1) + st−1

[

1−Φ(τ/
√
t− 1)

] .

Theorem 3.1 fully specifies the joint transition of (st) and (yt) in case of |ρ| < 1.10

If |ρ| = 1, we have perfect endogeneity and Φρ in (16) is not defined. In this case,

the current shock to model innovation ut fully dictates the realization of latent factor wt+1

determining the state in the next period. Consequently the transition of the state process

10It is clearly seen from Theorem 3.1 that the parameters α, τ and ρ in our model are all identified.
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(st) given by the density p(st|st−1, . . . , st−k−1, yt−1, . . . , yt−k−1), which is derived above for

|ρ| < 1 in Theorem 3.1, is no longer applicable. When |ρ| = 1, the transition probability

to low state ωρ(st−1, . . . , st−k−1, yt−1, . . . , yt−k−1) behaves differently, which in turn implies

that transition density of the state process needs to be modified accordingly. The transition

probability to low state ωρ in this case is given explicitly below for various values of AR

coefficient α of the latent factor (wt).

Corollary 3.2. If |ρ| = 1, the transition probability of the endogenous state process (st)

to low state ωρ(st−1, . . . , st−k−1, yt−1, . . . , yt−k−1) on the previous states and past observed

time series, introduced in Theorem 3.1, is given as follows:

(a) If α = 0

ωρ(st−1, . . . , st−k−1, yt−1, . . . , yt−k−1) =







1, if ρ
yt−1 −mt−1

σt−1
< τ

0, otherwise

(b) If 0 < α < 1,

ωρ(st−1, . . . , st−k−1, yt−1, . . . , yt−k−1)

= (1− st−1)min



1,
Φ
((

τ−ρyt−1−mt−1

σt−1

)√
1−α2

α

)

Φ
(

τ
√
1− α2

)





+ st−1max



0,
Φ
((

τ−ρyt−1−mt−1

σt−1

)√
1−α2

α

)

− Φ
(

τ
√
1− α2

)

1− Φ
(

τ
√
1− α2

)





(c) If −1 < α < 0,

ωρ(st−1, . . . , st−k−1, yt−1, . . . , yt−k−1)

= st−1 min



1,
1− Φ

((

τ−ρyt−1−mt−1

σt−1

)√
1−α2

α

)

1− Φ
(

τ
√
1− α2

)





+ (1− st−1)max



0,
Φ
(

τ
√
1− α2

)

− Φ
((

τ−ρyt−1−mt−1

σt−1

)√
1−α2

α

)

Φ
(

τ
√
1− α2

)





(d) If α = 1, for t = 1, ωρ(s0, y0) = Φ (τ − ρ(y0 −m0)/σ0) with P{s0 = 0} = 1 and
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P{s0 = 1} = 1 respectively when τ > 0 and τ ≤ 0 and, for t ≥ 2,

ωρ(st−1, . . . , st−k−1, yt−1, . . . , yt−k−1)

=























1− st−1, if ρ
yt−1 −mt−1

σt−1
> 0

Φ

((

τ−ρ
yt−1−mt−1

σt−1

)

1√
t− 1

)

− st−1Φ
(

τ/
√
t− 1

)

(1− st−1)Φ
(

τ/
√
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where p(yt|st, . . . , st−k,Ft−1) is given by (17), and we may readily obtain p(st, . . . , st−k|Ft)

from p(st, . . . , st−k|Ft−1) and p(yt|Ft−1).

Using our modified markov switching filter based on the state process (st), we can also

easily extract the latent autoregressive factor (wt). This can be done through the prediction

and updating steps described above in (20) and (21). In the prediction step, we note that

p(wt, st−1, . . . , st−k|Ft−1) =
∑

st−k−1

p(wt|st−1, ..., st−k−1,Ft−1)p(st−1, ..., st−k−1|Ft−1). (22)

Since p(st−1, ..., st−k−1|Ft−1) is obtained from the previous updating step, we may readily

compute p(wt, st−1, . . . , st−k|Ft−1) from (22) once we find p(wt|st−1, ..., st−k−1,Ft−1), the

conditional density of latent factor (wt) on previous states and past information on the

observed time series, which is derived below for various values of AR coefficient α of latent

factor and endogeneity parameter ρ.

Corollary 3.3. The transition density of latent factor (wt) on previous states and past

observed time series is given as follows:

(a) When |α| < 1 and |ρ| < 1,

p (wt|st−1 = 1, st−2, ..., st−k−1,Ft−1)

=

(

1− Φ

(

√

1−ρ2+α2ρ2

1−ρ2

(

τ −
α
(

wt−ρ
yt−1−mt−1

σt−1

)

1−ρ2+α2ρ2

)))

1− Φ
(

τ
√
1− α2

) N

(

ρ
yt−1 −mt−1

σt−1
,
1− ρ2 + α2ρ2

1− α2

)

,

p (wt|st−1 = 0, st−2, ..., st−k−1,Ft−1)

=

Φ

(

√

1−ρ2+α2ρ2

1−ρ2

(

τ −
α
(

wt−ρ
yt−1−mt−1

σt−1

)

1−ρ2+α2ρ2

))

Φ
(

τ
√
1− α2

) N

(

ρ
yt−1 −mt−1

σt−1
,
1− ρ2 + α2ρ2

1− α2

)

.
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(b) When |α| < 1 and |ρ| = 1,

p (wt|st−1 = 1, st−2, ..., st−k−1,Ft−1)

=























√
1− α2

α
φ

(

wt − ρyt−1−mt−1

σt−1

α

√

1− α2

)

1−Φ(τ
√
1−α2)

, if wt ≥ ατ + ρ
yt−1 −mt−1

σt−1

0, otherwise,

p (wt|st−1 = 0, st−2, ..., st−k−1,Ft−1)

=























√
1− α2

α
φ

(

wt − ρyt−1−mt−1

σt−1

α

√

1− α2

)

Φ(τ
√
1−α2)

, if wt ≤ ατ + ρ
yt−1 −mt−1

σt−1

0, otherwise.

(c) When α = 1 and |ρ| < 1,

p (wt|st−1 = 1, st−2, ..., st−k−1,Ft−1)

=

(

1− Φ

(

√

t−tρ2+ρ2

1−ρ2

(

τ −
wt−ρ

yt−1−mt−1

σt−1

t−tρ2+ρ2

)))

1−Φ
(

τ/
√
t− 1

) N

(

ρ
yt−1 −mt−1

σt−1
,
t− tρ2 + ρ2

t− 1

)

,

p (wt|st−1 = 0, st−2, ..., st−k−1,Ft−1)

=

Φ

(

√

t−tρ2+ρ2

1−ρ2

(

τ −
wt−ρ

yt−1−mt−1

σt−1

t−tρ2+ρ2

))

Φ
(

τ/
√
t− 1

) N

(

ρ
yt−1 −mt−1

σt−1
,
t− tρ2 + ρ2

t− 1

)

.
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(d) When α = 1 and |ρ| = 1,

p (wt|st−1 = 1, st−2, ..., st−k−1,Ft−1)

=























1√
t− 1

φ

(

wt − ρyt−1−mt−1

σt−1

t− 1

)

1−Φ(τ/
√
t−1)

, if wt ≥ τ + ρ
yt−1 −mt−1

σt−1

0, otherwise,

p (wt|st−1 = 0, st−2, ..., st−k−1,Ft−1)

=























1√
t− 1

φ

(

wt − ρyt−1−mt−1

σt−1

t− 1

)

1−Φ(τ/
√
t−1)

, if wt ≤ ατ + ρ
yt−1 −mt−1

σt−1

0, otherwise.

We may then obtain

p(wt, st−1, ..., st−k|Ft) =
p(yt|wt, st−1, ..., st−k,Ft−1)p(wt, st−1, ..., st−k |Ft−1)

p(yt|Ft−1)
, (23)

in the updating step. By marginalizing p(wt, st−1, ..., st−k|Ft) in (23), we get

p (wt|Ft) =
∑

st−1

· · ·
∑

st−k

p (wt, st−1, ..., st−k|Ft) ,

which yields the inferred factor,

E (wt|Ft) =

∫

wtp (wt|Ft) dwt

for all t = 1, 2, . . .. Therefore, we may easily extract the inferred factor, once the maximum

likelihood estimates of p(wt|Ft), 1 ≤ t ≤ n, are available.

We may generalize our model and allow for other covariates to affect the regime switching

process. For instance, we may specify the state dependent parameter πt as

πt = π(wt, xt),

where (xt) is a time series of covariates that are predetermined and observable, and accord-

ingly the level function π as

π(w, x) = π1
{

w < τ1 + τ ′2x
}

+ π̄1
{

w ≥ τ1 + τ ′2x
}
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with parameters (π, π̄) and (τ1, τ2), in place of (2). The level of threshold for regime

switching is therefore given as a linear function of some predetermined and observable

covariates. All of our previous results extend to this more general model only with some

trivial modifications. Since the required modifications are quite clear, we do not explain

them in detail here. This model is more directly comparable to the one considered in Kim

et al. (2008).

We may also easily extend our model to allow for a more general level function π(w) than

the one introduced in (2). One obvious possibility is to use the level function that allows for

multiple regimes, more than two. The extended models with a more general level function

allowing for multiple regimes can also be estimated using our modified markov switching

filter similar to that with the simple two-regime level function that we discussed in detail

in the previous sections. We may further extend our model to allow for a continuum of

regimes. In this case, however, our modified markov switching filter is no longer applicable,

and we need to use a density based filter to estimate the parameters.

4 Simulations

To evaluate the performance of our model and estimation procedure, we conduct an exten-

sive set of simulations. In the sequel, we will present our simulation models and results.

4.1 Simulation Models

In our simulations, we consider both mean and volatility switching models. For the volatility

model, we consider

yt = σ(st)ut, σ(st) = σ(1− st) + σst. (24)

The parameters σ and
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ρ between the current model innovation ut and the next period innovation vt+1 of the

latent autoregressive factor is set to be negative for both mean and volatility models, as

in most of our empirical results reported in the next section. To more thoroughly study

the impact of endogeneity on the estimation of our model parameters, we allow ρ to vary

from 0 to −1 in the increment of 0.1. On the other hand, we consider three pairs of

the autoregressive coefficient α of the latent factor and the threshold level τ given by

(α, τ) = (0.4, 0.5), (0.8, 0.7), (1, 9.63). The first two pairs with |α| < 1 yield stationary

latent factors, while the last pair with α = 1 makes the latent factor a random walk.

As discussed earlier, if ρ = 0, there exists a one-to-one correspondence between the (α, τ)

pair and the pair (a, b) of transition probabilities of state process, where a and b denote

respectively the transition probabilities from low to low state and from high to high state.

The first pair (α, τ) = (0.4, 0.5) corresponds to (a, b) = (0.75, 0.5), and the second pair

(α, τ) = (0.8, 0.7) to (a, b) = (0.86, 0.72). The transitions of these two pairs have the same

equilibrium distribution given by (a∗, b∗) = (2/3, 1/3), which also becomes the common

invariant distribution.11 This, in particular, implies that the unconditional probabilities of

the state being in low and high regimes are 2/3 and 1/3 respectively in every period. For

the third pair with α = 1, the state process is nonstationary and its transition varies over

time with no existing invariant distribution. Our choice of τ = 9.63 in the third pair yields

the unconditional probabilities (2/3, 1/3) of low and high regimes at the terminal period of

our simulation, which makes it comparable to the first two pairs.12

4.2 Simulation Results

In our simulations, we first examine the endogeneity bias. The estimators of parameters in

our models are expected to be biased if the presence of endogeneity in regime switching is

ignored. To see the magnitude of bias resulting from the neglected endogeneity in regime

switching, we let ρ = 0 for the exogenous regime switching models. Our simulation results

are summarized in Figure 3. On the left panel of Figure 3, the bias in the maximum

likelihood estimates σ̂ and σ̂ of low and high volatility levels σ and σ in the volatility
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Figure 3: Endogeneity Bias

Notes: On the left panel, the bias in ML estimates σ̂ and σ̂ of low and high volatility levels σ
and σ from the volatility model are presented respectively in the upper and lower parts, for three
persistency levels of latent factor α = 0.4, 0.8, 1, in each of its three columns. Each of the six
individual graphs plots the bias from the endogenous (red solid line) and exogenous (blue dashed
line) regime switching models across different levels of endogeneity parameter ρ on the horizontal
axis. Presented in the same manner on the right panel are the bias in the ML estimates µ̂, µ̂ and γ̂ of
low and high mean levels and AR coefficient of observed time series, µ, µ andfl
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Figure 4: Efficiency Gain from Endogeneity

Notes: Respectively presented in the left and right panels of Figure 4 are the standard errors of
the ML estimates of the parameters in our endogenous volatility and mean switching models. The
6 graphs on the left and 9 graphs on the right panels present the standard errors of ML estimates
from the volatility and mean models in the exactly the same manner as in Figure 3.

to save space, our simulations show that the inferred probabilities of latent states are also

affected seriously if the endogeneity in regime switching is not properly taken care of.

Not only can the presence of endogeneity give us a pitfall leading to a substantial bias

in parameter estimates, but also an opportunity to improve the precision of parameter

estimates in markov switching models. In fact, in the endogenous regime switching model,

additional information on the state process (st) is provided by the observed time series (yt).

Note that the transition of the state process (st) in our models is determined by lags of (yt)

as well as lags of (st), and therefore we have an additional channel for the information in (yt)

to be accumulated in the likelihood function. This is not the case if we let ρ = 0 as in the

conventional markov switching model that does not allow for the presence of endogeneity.

The simulation results in Figure 4 show that the presence of endogeneity in regime switching

indeed improves the efficiency of parameter estimates, if accounted for properly as in our

endogenous models. The standard errors of ML estimates of the parameters in our volatility

and mean models are presented respectively in the left and right panels of Figure 4 in exactly

the same manner as in Figure 3.

As shown in Figure 4, the efficiency gain from the presence of endogeneity in regime

switching can be quite substantial. This is equally true for both mean and volatility models.

For instance, if we set α = 0.8, the standard deviations of the estimators µ̂ and σ̂ from our
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mean and volatility models having endogenous regime switching with ρ = −0.9 decrease by

approximately 24% and 22%, respectively, if compared with the models having exogenous

regime switching with ρ = 0. Of course, the presence of endogeneity yields efficiency gain,

only when it is properly taken into account. If the conventional markov switching model

is used, the presence of endogeneity in most cases has a negative effect on the standard

deviations of parameter estimators.

In general, the standard deviations of parameter estimators are greatly reduced in both

mean and volatility models if we have endogeneity in regime switching, as long as |α| < 1

and the latent factor is stationary. Naturally, the efficiency gain increases as |ρ| gets large

and the degree of endogeneity increases. On the other hand, when the latent factor is

nonstationary with α = 1, the standard errors of parameter estimators from the endogenous

model remain more or less constant across ρ, showing little or no sign of efficiency gain.

This may be due to the fact that switching occurs rarely when the latent factor is highly

persistent, reducing the opportunity for additional information contained in the observed

time series on the switching to play a positive role.13

Finally, we 