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Abstract

Real data often have complicated correlation over cross section and time. Model-
ing, estimating and interpreting the correlations in data are particularly important in
economic analysis. This paper integrates several correlation-modeling techniques and
propose dynamic spatial panel data models with common shocks to accommodate pos-
sibly complicated correlation structure over cross section and time. A large number of
incidental parameters exist within the model. The quasi maximum likelihood method
(ML) is proposed to estimate the model. Heteroskedasticity is explicitly estimated.
The asymptotic properties of the quasi maximum likelihood estimator (MLE) are in-
vestigated. Our analysis indicates that the MLE has a non-negligible bias. We propose
a bias correction method for the MLE. The simulations further reveal the excellent
finite sample properties of the quasi-MLE after bias correction.
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1 Introduction

Real data often have complicated correlation over cross section and time. These correlations
contain important information on the relationship among economic variables. Modeling,
estimating and interpreting the correlations in data are particularly important in economic
analysis. In econometric literature, the correlations over time are typically dealt with by
the autoregressive models (e.g., Brockwell and Davis (1991), Fuller (1996), etc), among
other models. The correlations over cross section are typically captured by spatial models
or factor models (e.g., Anselin (1988), Bai and Li (2012), Fan et al. (2011), etc), among
other models. In this paper, we integrate these correlation-modeling techniques and pro-
pose dynamic spatial panel data models with common shocks to accommodate possibly
complicated correlation structure over cross section and time.

Spatial models are one of primary tools to study cross-sectional interactions among
units. In these models, cross sectional dependence is captured by spatial weights matrices
based either on physical distance, and relative position in a social network or on other types
of economic distance¬. Early development of spatial models has been summarized by a
number of books, including Cliff and Ord (1973), Anselin (1988), and Cressie (1993). Gen-
eralized method of moments (GMM) estimation of spatial models are studied by Kelijian
and Prucha (1998, 1999, 2010), and Kapoor et al. (2007), among others. The maximum
likelihood method (ML) is considered by Ord (1975), Anselin (1988), Lee (2004a), Yu et
al. (2008) and Lee and Yu (2010), and so on.

Cross-sectional dependence may also arises from the response of individuals to common
shocks. This motivates common shocks models, which are widely used in applied studies,
see, e.g., Ross (1976), Chamberlain and Rothschild (1983), Stock and Watson (1998), to
name a few. For panel data models with multiple common shocks, Ahn et al. (2013) con-
sider the fixed-T GMM estimation. Pesaran (2006) proposes the correlated random effects
method by including additional regressors obtained from cross-sectionally averaging on de-
pendent and the explanatory variables. The principal components method is studied by Bai
(2009) and reinvestigated with perturbation theory by Moon and Weidner (2009). Bai and
Li (2014b) consider the maximum likelihood method in the presence of heteroskedasticity.

A popular approach to dealing with temporal dependence is dynamic panel data models.
In these models, the presence of individual time-invariant intercepts (fixed-effect) causes
the so-called “incidental parameters problem” (Neyman and Scott (1948)), which is the
primary concern in the related studies. A consequence of the incidental parameters problem
is the inconsistency of the within group estimator under fixed-T (Nickell (1981)). Anderson
and Hsiao (1981) suggests taking time difference to eliminate the fixed effects and use two-
periods lagged dependent variable as instrument to estimate the model. Arellano and Bond
(1991) extend the Anderson and Hsiao’s idea with the GMM method. Under large-N and
large-T setup, Hahn and Kuersteiner (2002) shows that the within-group estimator is still
consistent but has a O( 1

T ) bias. After bias correction, the corrected estimator achieves
the efficiency bound under normality assumption of errors. Alvarez and Arellano (2003)

¬For spatial interaction and economic distance, see, e.g., Case (1991), Case et al. (1993), Conley (1999),
Conley and Dupor (2003), and Topa (2001).
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investigate the asymptotic properties of the within group, GMM and limited information
ML estimators under large-N and large-T .

In this paper, we consider jointly modeling spatial interactions, dynamic interactions
and common shocks within the following model:

yit = αi + ρ
N∑
j=1

wij,Nyjt + δyit−1 + x′itβ + λ′ift + eit. (1.1)

where yit is the dependent variable; xit = (xit1, xit2, . . . , xitk)′ is a k-dimensional vector
of explanatory variables; ft is an r-dimensional vector of unobservable common shocks;
λi is the corresponding heterogenous response to the common shocks; WN = (wij,N )N×N
is a specified spatial weights matrix whose diagonal elements wii,N are 0; and eit are
the idiosyncratic errors. In model (1.1), term λ′ift captures the common-shocks effects,
ρ
∑N
j=1wij,Nyjt captures the spatial effects, and δyit−1 captures the dynamic effects. The

joint modeling allows one to test which type of effects is present within data. We may
test ρ = 0 while allowing common-shocks effects and dynamic effects; or similarly, we may
determine if the number of factors is zero in a model with spatial effects and dynamic
effects. It may be possible that all the three effects are present. The features of model
(1.1) make it flexible enough to cover a wide range of applications. The applicability of
the model is discussed in Section 2.

An additional feature of the model is the allowance of cross sectional heteroskedasticity.
The importance of permitting heteroskedasticity is noted by Kelejian and Prucha (2010)
and Lin and Lee (2010). The heteroskedastic variances can be empirically important,
e.g., Glaeser et al. (1996) and Anselin (1988). In addition, if heteroskedasticity exists
but homoskedasticity is imposed, then MLE can be inconsistent. Under large-N , the
consistency analysis for MLE under heteroskedasticity is challenging even for spatial panel
models without common shocks, owing to the simultaneous estimation of a large number of
variance parameters along with (ρ, δ, β). The existing quasi maximum likelihood studies,
such as Yu et al. (2008) and Lee and Yu (2010), typically assume homoskedasticity. These
authors show that the limiting variance of MLE has a sandwich formula unless normality is
assumed. Interestingly, we show that the limiting variance of the MLE is not of a sandwich
form if heteroskedasticity is allowed.

Spatial correlations and common shocks are also considered by Pesaran and Tosetti
(2011). Except that the dynamics is allowed in our model but not in theirs, another key
difference is that they specify the spatial autocorrelation on the unobservable errors eit
while we specify the spatial autocorrelation on the observable dependent variable yit. Both
specifications are of practical relevance. Spatial specification on observable data makes
explicit the empirical implication of the coefficient ρ. From a theoretical perspective, the
spatial interaction on the dependent variable gives rise to the endogeneity problem, while
the spatial interaction on the errors, in general, does not. As a result, under the Pesaran
and Tosetti setup, existing estimation methods on the common shocks models such as
Pesaran (2006) and Bai (2009) can be applied to estimate the model. As a comparison,
these methods cannot be directly applied to model (1.1) due to the endogeneity from the
spatial interactions.
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In this study, we consider the pseudo-Gaussian maximum likelihood method (MLE),
which simultaneously estimates all parameters of the model, including heteroskedasticity.
We give a rigorous analysis of the MLE including the consistency, the rate of convergence
and limiting distributions. Since the proposed model has several sources of incidental
parameters (individual-dependent intercepts, interactive effects, heteroskedasticity), the
incidental parameters problem exists and the MLE is shown to have a non-negligible bias.
Following Hahn and Kuersteiner (2002), we conduct bias correction on the MLE to make
it center around zero. The simulations show that the bias-corrected MLE has good finite
sample performance.

The rest of the paper is organized as follows. Section 2 gives some potential showcase
examples of the model. Section 3 lists the assumptions needed for the asymptotic analysis.
Section 4 presents the objective function and the associated first order conditions. The
asymptotic properties including the consistency, the convergence rates and the limiting
distributions are derived in Section 5. Section 6 discusses the ML estimation on spatial
models with heteroskedasticity. Section 7 reports simulation results. Section 8 discusses
extensions of the model. The last section concludes. Technical proofs are given in a
supplementary document. In subsequent exposition, the matrix norms are defined in the
following way. For any m × n matrix A, ‖A‖ denotes the Frobenius norm of A, i.e.,
‖A‖ = [tr(A′A)]1/2. In addition, ‖A‖∞ is defined as ‖A‖∞ = max1≤i≤m

∑n
j=1 |aij | and

‖A‖1 is defined as ‖A‖1 = max1≤j≤n
∑m
i=1 |aij |, where aij is the (i, j)th element of A. We

use ȧt to denote ȧt = at − 1
T

∑T
t=1 at for any column vector at. Throughout the paper, we

assume the data of Y at time 0 are observed.

2 Some application examples

The proposed model can be applied in a variety of economic and social setups. In this
section, we list two typical examples.

Finance. Recent studies pay much attention on financial network and financial conta-
gion. Let yit be the stock price (or profit) of firm i at period t. In financial market, one
firm may hold shares of other firms and other firms may hold shares of this firm. This
generates a financial network (Elliott et al. (2014)). Let WN = [wij,N ] be some metric,
which measures the cross-holding pattern among firms in market. Then ρ

∑N
j=1wij,Nyjt

captures the cross-holding effects on firm i. In addition, as implied in asset pricing theory
(see, e.g., Ross (1976), Conner and Korajczyk (1986, 1988), Geweke and Zhou (1996)),
there are systematic shocks and risks affecting all the stocks, which we denote by ft. The
individual-dependent responses to these shocks are captured by λi. This leads to term
λ′ift. Furthermore, the adaptive expectation of firms gives rise to δyit−1. Let xit be a
vector of explanatory variables, which are thought useful to explain the behaviors of stock
prices. We allow that xit has arbitrary correlations with systematic shocks ft. Putting
these ingredients together, we have the model specification like (1.1).

Macroeconomics. Standard economic theory asserts if other countries grow with high
rates, the outside demand would drive up the growth rate of home country through trade.
Recent studies shows that international trade exhibits some spatial pattern, not only due to
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the distance cost as illustrated by “gravity” theory, but also duo to regional trade agreement
as well as ethnical, cultural and social network among the firms, see, e.g., Baltagi et al.
(2008), Lawless (2009), Rauch and Trindade (2002), Defever et al. (2015), etc. Let yit be
growth rate of country i at period t, andWN = [wij,N ] be some metric, which measures the
closeness of countries based on the bilateral trade. Then term ρ

∑N
j=1wij,Nyjt captures the

companion-driving effect in growth. Similarly as in the previous example, the growth rates
of countries over the world are subject to global economic shocks, such as technological
advances and financial crisis (Kose, Otrok and Whiteman 2003). We therefore introduce
term λ′ift to adapt to this fact. Term δyit−1 is also necessary because of the inertia of
growth. With these considerations, we have the specification of model (1.1).

Besides the above economic applications, the proposed model also has its applications
in social science. In a pioneer study, Manski (1993) distinguishes three effects within
social interactions, endogenous effects, contextual effects and correlated effects. In empirical
studies, endogenous effects are estimated by the spatial term, controlling correlated effects
through the usually additive fixed effects (Lin (2010)). In the proposed model, we can deal
with correlated effects in a more general and plausible way by factor models. In addition,
we allow the dynamics. In Appendix, we show that, with some slight modifications, our
model specification can be motivated by the quadratic utility model of Calvó-Armengol et
al. (2009).



We shall use (ρ∗, δ∗, β∗) to denote the true values for (ρ, δ, β), and we use (Λ∗, f∗t ) to
denote the true values for (Λ, ft). So the data generating process is

Yt = α∗ + ρ∗WNYt + δ∗Yt−1 +Xtβ
∗ + Λ∗f∗t + et.

Let C be a generic constant large enough. We make following assumptions for the asymp-
totic analysis.

Assumption A: The xit is either a fixed constant or a random variable. If xit is fixed,
we assume ‖xit‖ ≤ C; if xit is random, we assume E(‖xit‖4) ≤ C for all i and t. If xit is
random, it is independent with the idiosyncratic error ejs for all i, j, t and s.

Assumption B: The λ∗i and f∗t can be either fixed constants and random variables.
If λ∗i is fixed, we assume that ‖λ∗i ‖ ≤ C for all i and 1

NΛ∗′Σ∗−1
ee Λ∗ → Ω∗Λ where Λ∗ =

(λ∗1, λ∗2, . . . , λ∗N )′, otherwise we assume that E(‖λ∗i ‖4) ≤ C for all i and 1
NΛ∗′Σ∗−1

ee Λ∗ p−→ Ω∗Λ,
where Σ∗ee is defined in Assumption C and Ω∗Λ is some matrix positive definite. If f∗t is
fixed, we assume that ‖f∗t ‖ ≤ C for all t and 1

T F
∗′F ∗ → Ω∗F , otherwise we assume that

E‖f∗t ‖4 ≤ C for all t and 1
T F
∗′F ∗

p−→ Ω∗F , where Ω∗F is some matrix positive definite.
Assumption C: The eit is independent and identically distributed over t and indepen-

dent over i with E(eit) = 0, C−1 ≤ σ∗2i ≤ C and E(e8
it) ≤ C for all i, where σ∗2i = E(e2

it).
Let Σ∗ee = diag(σ∗21 , σ

∗2
2 , . . . , σ

∗2
N ) be the variance of et = (e1t, e2t, . . . , eNt)′. In addition, if

{λ∗i } and {f∗t } are random, we assume that {eit} are independent with {λ∗i } and {f∗t }.
Assumption D: The underlying value ω∗ = (ρ∗, δ∗, β∗′)′ is an interior point of param-

eters space Θω = (−1, 1)×Sδ ×Sβ, where Sδ and Sβ are the two compact subsets of R and
Rk.

Remark 3.1 Assumption A impose restrictions on the explanatory variables xit. Al-
though it requires that xit be independent with ejs, it does allow xit to have arbitrary
correlations with λi or ft or λ′ift. This extends the traditional panel data analysis. As-
sumption B is about factors and factor loadings. This assumption is standard in pure
factor analysis, see Bai (2003) and Bai and Li (2012). Assumption C assumes that the
idiosyncratic error eit is independent over the cross section and the time. In the present
scenario, such an assumption is not restrictive as it looks to be since the weak correlations
over the cross section and the time in data have been dealt with by the spatial term and
the lag dependent term. However, if the cross sectional correlation of eit is a major con-
cern in empirical studies, our analysis can be extended to accommodate it, see the related
discussion on SAR disturbances in Section 7. Assumptions D impose restrictions on the
underlying coefficients. This assumption is standard.

Assumption E: The weights matrix WN satisfies that IN − ρ∗WN is invertible and

lim sup
N→∞

‖WM‖∞ ≤ C; lim sup
N→∞

‖WN‖1 ≤ C; (3.2)

lim sup
N→∞

‖(IN − ρ∗WN )−1‖∞ ≤ C; lim sup
N→∞

‖(IN − ρ∗WN )−1‖1 ≤ C. (3.3)

In addition, all the diagonal elements of WN are zeros.
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Assumption F: Let G∗N = (IN − ρ∗WN )−1. We assume

lim sup
N→∞

∞∑
l=0

∥∥(δ∗G∗N )l
∥∥
∞ ≤ C; lim sup

N→∞

∞∑
l=0

∥∥(δ∗G∗N )l
∥∥

1 ≤ C.

Remark 3.2 Assumptions E and F are imposed on the spatial weights matrix. Assump-
tion E is standard in spatial econometrics, see Kelejian and Prucha (1998), Lee (2004a), Yu
et al. (2008), Lee and Yu (2010), to name a few. Under this assumption, some key matrices,
which play important roles in asymptotic analysis such as G∗N in Assumption F and S∗N
in Assumption G, can be handled in a tractable way. Assumption F implicitly guarantees
that yit has a well-defined MA(∞) expression. Similar assumption also appears in Yu et
al. (2008). A set of sufficient conditions for Assumptions E and F are lim sup

N→∞
‖WN‖∞ ≤ 1,

lim sup
N→∞

‖WN‖1 ≤ 1 and |ρ∗|+ |δ∗| < 1 because

lim sup
N→∞

‖G∗N‖∞ = lim sup
N→∞

‖(I − ρ∗WN )−1‖∞ ≤ lim sup
N→∞

∞∑
j=0

(‖ρ∗WN‖∞)j ≤ 1
1− |ρ∗| <∞,

and the argument for lim sup
N→∞

‖G∗N‖1 ≤ 1
1−|ρ∗| <∞ is the same. Similarly

lim sup
N→∞

∞∑
l=0

∥∥(δ∗G∗N )l
∥∥
∞ ≤ lim sup

N→∞

∞∑
l=0

(|δ∗|·‖G∗N‖∞)l ≤
∞∑
l=0

[ |δ∗|
1− |ρ∗|

]l
= 1− |ρ∗|

1− |δ∗| − |ρ∗| <∞,

and the argument for lim sup
N→∞

∑∞
l=0(|δ∗| · ‖G∗N‖1)l ≤ 1−|ρ∗|

1−|δ∗|−|ρ∗| <∞ is the same.

To state Assumption G, we first introduce some notations for ease of exposition. Let
Ÿ = (ÿit)N×T be the data matrix for ÿit with ÿit =

∑N
j=1wij,N ẏjt and ẏjt = yjt −

T−1∑T
s=1 yjs, Ẏ−1 = (ẏit−1)N×T with ẏit−1 = yit−1 − T−1∑T

s=1 yis−1 and Ẋ1, Ẋ2, . . . , Ẋk

be defined similarly as Ẏ−1. Furthermore, let (k + 1)× (k + 1) matrix Db be defined as

Db = 1
NT


tr(Ẏ ′−1M̈Ẏ−1MF ∗) tr(Ẏ ′−1M̈Ẋ1MF ∗) · · · tr(Ẏ ′−1M̈ẊkMF ∗)
tr(Ẋ ′1M̈Ẏ−1MF ∗) tr(Ẋ ′1M̈Ẋ1MF ∗) · · · tr(Ẋ ′1M̈ẊkMF ∗)

...
... . . . ...

tr(Ẋ ′kM̈Ẏ−1MF ∗) tr(Ẋ ′kM̈Ẋ1MF ∗) · · · tr(Ẋ ′kM̈ẊkMF ∗)

 .

Assumption G: Let S∗N = WN (IN −ρ∗WN )−1 and S∗ij,N be the (i, j)th element of S∗N .
Let = be parameters space for Λ and Σee, which satisfies the normalization conditions, i.e.,

= =
{

(Λ,Σee)
∣∣∣∣ C−1 ≤ σ2

i ≤ C,∀ i; and 1
N

Λ′Σ−1
ee Λ = Ir

}
,

We assume one of the following conditions:
(i) δ∗ 6= 0 or β∗ 6= 0. Let Ỹ = δ∗Ẏ−1 +

∑k
p=1 β

∗
pẊp and

ζ =
[ 1
NT

tr(Ỹ ′M̈Ẏ−1MF ∗),
1
NT

tr(Ỹ ′M̈Ẋ1MF ∗), · · · ,
1
NT

tr(Ỹ ′M̈ẊkMF ∗)
]
,
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where ζ is a (k+ 1)-dimensional row vector. The matrix Da =
[

1
NT tr(Ỹ ′M̈Ỹ MF ∗) ζ

ζ ′ Db

]
is

positive definite on =, whereMF ∗ = IT−F ∗(F ∗′F ∗)−1F ∗′ and M̈ = Σ−1
ee −N−1Σ−1

ee ΛΛ′Σ−1
ee .

(ii) For all ρ ∈ Sρ and all N ,

lim inf
N→∞

1
N

N∑
i=1

N∑
j=1,j 6=i

(
S∗ij,Nσ

∗2
j + S∗ji,Nσ

∗2
i − (ρ− ρ∗)

N∑
p=1

S∗ip,NS
∗
jp,Nσ

∗2
p

)2
> 0, (3.4)

and Db is positive definite on =, where M̈ and MF ∗ are defined the same as in (i).

Remark 3.3 Assumption G imposes the conditions for the identification of ρ and δ, β.
The identification for the coefficient of spatial term is a non-trivial problem in spatial
econometrics. This problem is investigated in a thorough way in Lee (2004a). Assumption
G(i) can be viewed as a version of Assumption 8 of Lee (2004a) in the common shocks
setting. Since the identification of ρ in Assumption G(i) depends on the underlying value
of δ and β, it is a local identification condition. In contrast, Assumption G(ii) is a global
identification condition. Condition (3.4) corresponds to Assumption 9 in Lee (2004a) and
the condition in Theorem 2 of Yu et al. (2008), but it is different from theirs because we
allow heteroskedasticity. To see this, we show in Appendix A that condition (3.4) is related
to the unique solution of T1N (ρ, σ2

1, . . . , σ
2
N ) = 0 with

T1N (ρ, σ2
1, . . . , σ

2
N ) = − 1

2N tr[RΣ∗eeR′Σ−1
ee ] + 1

2N ln |RΣ∗eeR′Σ−1
ee |+

1
2 ,

where R = (IN − ρWN )(IN − ρ∗WN )−1. When homoskedasticity is assumed, T1N reduces
to T1,n in Yu et al. (2008). After concentrating out the common variance σ2, T1,n leads
to Assumption 9 in Lee (2004a) and the assumption of Theorem 2 in Yu et al. (2008).
Because of heteroskedasticity our identification condition takes a different form.

Assumption H: The parameters ω and σ2
i for i = 1, 2, . . . , N are estimated in compact

sets.

Remark 3.4 Assumption H assumes that partial parameters are estimated in compact
sets. This assumption guarantees that the maximizer of the objective function is well
defined. In pure factor analysis, it is known that the global maximizer of the quasi likelihood
function with allowance of cross sectional heteroskedasticity do not exist, but the local
maximizers are well defined and are consistent estimators for the underlying parameters
under large N and large T , see, e.g., Andreson (2003). The objective function in the
present paper is an extended version of the one in pure factor models and inherits the same
problem. We therefore impose Assumption H to confine our analysis on local maximizers.

4 Objective function and first order conditions

Let Zt(α, ω,Λ, F ) = Yt−α−ρWNYt−δYt−1−Xtβ−Λft with ω = (ρ, δ, β′)′. Conditional on
Y0 which we assume are observed, the quasi likelihood function, by assuming the normality
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of eit, is

L∗(θ) = − 1
2NT

T∑
t=1

Zt(α, ω,Λ, F )′Σ−1
ee Zt(α, ω,Λ, F )− 1

2N ln |Σee|+
1
N

ln |IN − ρWN |.

where θ = (ω,Λ, diag(Σee). Given Σee, ω and Λ, it is seen that α and ft maximize the
above function at

α = Ȳ − ρWȲ − δȲ−1 − X̄β − Λf̄

and
ft = (Λ′Σ−1

ee Λ)−1Λ′Σ−1
ee (Ẏt − ρWẎt − δẎt−1 − Ẋtβ).

Substituting the above two equation into the preceding likelihood function to concentrate
out α and ft, the objective function can therefore be simplified as

L(θ) = − 1
2NT

T∑
t=1

(Ẏt − ρŸt − δẎt−1 − Ẋtβ)′M̈(Ẏt − ρŸt − δẎt−1 − Ẋtβ)

− 1
2N ln |Σee|+

1
N

ln |IN − ρWN |.

where M̈ = Σ−1
ee − Σ−1

ee Λ(Λ′Σ−1
ee Λ)−1Λ′Σ−1

ee = Σ−1
ee − 1

NΣ−1
ee ΛΛ′Σ−1

ee and Ÿt = WN Ẏt. The
maximizer, defined by

θ̂ = argmax
θ∈Θ

L(θ),

is referred to as the quasi maximum likelihood estimator or MLE, where Θ is the parameters
space specified by Assumptions G and H. More specifically, Θ is defined as

Θ =
{
θ = (ω,Σee,Λ)

∣∣∣∣ ‖ω‖ ≤ C; C−1 ≤ σ2
i ≤ C,∀i;

1
N

Λ′Σ−1
ee Λ = Ir

}
.

The first order condition for Λ gives[
1
NT

T∑
t=1

(Ẏt − ρ̂Ÿt − δ̂Ẏt−1 − Ẋtβ̂)(Ẏt − ρ̂Ÿt − δ̂Ẏt−1 − Ẋtβ̂)′
]

Σ̂−1
ee Λ̂ = Λ̂V̂ . (4.1)

where V̂ is a diagonal matrix. The first order condition for σ2
i gives

σ̂2
i = 1

T

T∑
t=1

[
ẏit − ρ̂ÿit − δ̂ẏit−1 − ẋ′itβ̂ − λ̂′if̂t

]2
where ÿit =

∑N
j=1wij,N ẏjt and

f̂t = (Λ̂′Σ̂−1
ee Λ̂)−1Λ̂′Σ̂−1

ee (Ẏt − ρ̂Ÿt − δ̂Ẏt−1 − Ẋtβ̂) = 1
N

Λ̂′Σ̂−1
ee (Ẏt − ρ̂Ÿt − δ̂Ẏt−1 − Ẋtβ̂).

The first order condition for ρ is

1
NT

T∑
t=1

Ÿ ′t
̂̈M(Ẏt − ρ̂Ÿt − δ̂Ẏt−1 − Ẋtβ̂)− 1

N
tr[WN (IN − ρ̂WN )−1] = 0.

Strictly speaking, θ should be written as θN since it also depends on N . But we drop this dependence
from the symbol for notational simplicity. The symbols Θ and = below are treated in a similar way.
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The first order condition for δ is

1
NT

T∑
t=1

Ẏ ′t−1
̂̈M(Ẏt − ρ̂Ÿt − δ̂Ẏt−1 − Ẋtβ̂) = 0.

The first order condition for β is

1
NT

T∑
t=1

Ẋ ′t
̂̈M(Ẏt − ρ̂Ÿt − δ̂Ẏt−1 − Ẋtβ̂) = 0.

We emphasize that in computing the MLE, we do not need to solve the first order condi-
tions. They are for theoretical analysis.

5 Asymptotic properties of the MLE

In this section, we first show that the MLE is consistent, we then derive the convergence
rates, the asymptotic representation and the limiting distributions.

Proposition 5.1 Under Assumptions A-H, when N,T →∞®, we have

ω̂
p−→ ω∗;

1
N

N∑
i=1

(σ̂2
i − σ∗2i )2 p−→ 0;

1
N

Λ∗′̂̈MΛ∗ p−→ 0.

where ω∗ = (ρ∗, δ∗, β∗′)′ and ̂̈M = Σ̂−1
ee −N−1Σ̂−1

ee Λ̂Λ̂′Σ̂−1
ee .

In the analysis of panel data models with common shocks but without spatial effects,
a difficult problem is to establish consistency. The parameters of interest (δ, β) are si-
multaneously estimated with high dimensional nuisance parameters Λ and Σee. The usual
arguments need some modifications to accommodate this feature. The presence of spatial
effects further compounds the difficult. Our proof of Proposition 5.1 consists of three steps.
First we show there exists a function L1(θ) such that

sup
θ∈Θ
|L(θ)− L1(θ)| p−→ 0.

Then we show that the function L1(θ) possesses the property that there exists an ε > 0,
which depends on the N c(ω∗), such that

sup
(Λ,Σee)∈=

sup
ω∈N c(ω∗)

L1(θ)− L1(θ∗) < −ε,

®In this paper, when we say the limit we mean the joint limit, which is the limit by letting N and T pass
to infinity simultaneously, without naming the order that which index diverges first and which one diverges
next. The latter case is called the sequential limit in the literature. Readers are referred to Phillips and
Moon (1999) for a formal and precise definition of the two types of limit. See also the definition Op and op

in Appendix A.
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where N c(ω∗) is the complement of an open neighborhood of ω∗. Given the above two
results, we have ω̂ p−→ ω∗. After obtaining the consistency of ω̂, in the third step we show
the remaining two results in Proposition 5.1.

Notice that ω is low-dimensional but Σee and Λ are high dimensional. So the usual
consistency concept applies for ω. But for Σee and Λ, their consistencies can only be defined
under some chosen norm. The second result is equivalent to 1

N ‖Σ̂ee − Σ∗ee‖2
p−→ 0. So the

chosen norm is dimension-adjusted frobenious norm. The norm used in the last result can
be viewed as a extension of generalized square coefficient between two high-dimensional
vectors. We choose this norm to take account of rotational indeterminacy on factor and
factor loadings, see Bai and Li (2012) for discussions on rotational indeterminacy in factor
analysis.

The consistency result allows us to further derive the rates of convergence.

Theorem 5.1 Let H = 1
NT V̂

−1(Λ̂′Σ̂−1
ee Λ∗)(F ∗′F ∗). Under Assumptions A-H, when N,T →

∞, we have

1
N

N∑
i=1
‖λ̂i −Hλ∗i ‖2 = Op(N−2) +Op(T−1);

1
N

N∑
i=1

(σ̂2
i − σ∗2i )2 = Op(N−2) +Op(T−1);

ω̂ − ω∗ = Op(N−1) +Op(T−1).

where V̂ is defined in (4.1).

It is well documented in econometric literature that the MLE for dynamic panel data
models has a O( 1

T ) bias term, see, for example, Hahn and Kuersteiner (2002) and Alvarez
and Arellano (2003). The case with inclusion of spatial term and lag spatial term has
been investigated by Yu et al. (2008), which shows that the bias term is still O( 1

T ) but the
expression is related with spatial weights matrix. This bias term is inherited by our MLE,
as we can see that model (1.1) is an extension of classical spatial dynamic models. Apart
from this O( 1

T ) bias term, our analysis indicates that there is another O( 1
N ) bias arising

from common shocks part Λft. The presence of biases in the MLE is due to incidental
parameters problem, see Neyman and Scott (1948) for a general discussion.

To state the asymptotic properties of the MLE, we define the following notations:

Bt =
∞∑
l=0

(δ∗G∗N )lG∗NẊt−lβ
∗ +

∞∑
l=0

(δ∗G∗N )lG∗NΛ∗ḟ∗t−l, Ḃt = Bt −
1
T

T∑
s=1

Bs

B̈t = WN Ḃt, Qt =
∞∑
l=0

(δ∗G∗N )lG∗Net−l, Jt = S∗N

∞∑
l=1

(δ∗G∗N )let−l.

Now we state the main theorem in this paper, which gives the asymptotic representation
of ω̂ − ω.

Theorem 5.2 Under Assumptions A-H, when N,T → ∞ and
√
N/T → 0,

√
T/N → 0,

we have √
NT (ω̂ − ω∗ + b) = D−1ξ + op(1),
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where

ξ = 1√
NT


∑T
t=1 B̈

′
tM̈
∗et −

∑T
t=1

∑T
s=1 B̈

′
tM̈
∗esπ

∗
st +

∑T
t=1 J

′
tΣ∗−1

ee et + η∑T
t=1 Ḃ

′
t−1M̈

∗et −
∑T
t=1

∑T
s=1 Ḃ

′
t−1M̈

∗esπ
∗
st +

∑T
t=1Q

′
t−1Σ∗−1

ee et∑T
t=1 Ẋ

′
tM̈
∗et −

∑T
t=1

∑T
s=1 Ẋ

′
tM̈
∗esπ

∗
st


with π∗st = f∗′s (F ∗′F ∗)−1f∗t and M̈∗ = Σ∗−1

ee − 1
NΣ∗−1

ee Λ∗Λ∗′Σ∗−1
ee . The (k + 2) × (k + 2)

matrix D is defined as

D = 1
NT

×


tr(Ÿ ′M̈∗Ÿ MF ∗)+Φ tr(Ÿ ′M̈∗Ẏ−1MF ∗) tr(Ÿ ′M̈∗Ẋ1MF ∗) · · · tr(Ÿ ′M̈∗ẊkMF ∗)
tr(Ẏ ′−1M̈

∗Ÿ MF ∗) tr(Ẏ ′−1M̈
∗Ẏ−1MF ∗) tr(Ẏ ′−1M̈

∗Ẋ1MF ∗) · · · tr(Ẏ ′−1M̈
∗ẊkMF ∗)

tr(Ẋ ′1M̈∗Ÿ MF ∗) tr(Ẋ ′1M̈∗Ẏ−1MF ∗) tr(Ẋ ′1M̈∗Ẋ1MF ∗) · · · tr(Ẋ ′1M̈∗ẊkMF ∗)
...

...
... . . . ...

tr(Ẋ ′kM̈∗Ÿ MF ∗) tr(Ẋ ′kM̈∗Ẏ−1MF ∗) tr(Ẋ ′kM̈∗Ẋ1MF ∗) · · · tr(Ẋ ′kM̈∗ẊkMF ∗)


with Φ = T [tr(S∗2N )− 2

∑N
i=1 S

∗2
ii,N ]. The (k + 2)-dimensional vector b is defined as

b = D−1

 1
NT tr[δ∗S∗NG∗N (IN − δ∗G∗N )−1] + 1

N tr[Λ∗′S◦′NΣ∗−1
ee Λ∗(Λ∗′Σ∗−1

ee Λ∗)−1]
1
NT tr[G∗N (IN − δ∗G∗N )−1]

0k×1


and

η =
T∑
t=1

e′tS
∗◦′
N Σ∗−1

ee et =
N∑
i=1

N∑
j=1

T∑
t=1

1
σ∗2i

1(i 6= j)eitejtS∗ij,N .

Here S∗◦N is an N ×N matrix which is obtained by setting all the diagonal elements of S∗N
to zeros.

Although ξ has a relatively complicated expression, it can be shown that D−1/2ξ
d−→

N(0, 1) by resorting to the martingale difference central limit theorem (see Corollary 3.1
in Hall and Heyde (1980)). Given this result, we have the following corollary.

Corollary 5.1 Under the assumptions in Theorem 5.2, when N,T →∞ and N/T → κ2,
we have √

NT (ω̂ − ω∗) d−→ N
(
− b�,

[
plim

N,T→∞
D
]−1)

,

where

b� = plim
N,T→∞

D−1

κ 1
N tr[δ∗S∗NG∗N (IN − δ∗G∗N )−1] + 1

κtr[Λ∗′S◦′NΣ∗−1
ee Λ∗(Λ∗′Σ∗−1

ee Λ∗)−1]
κ 1
N tr[G∗N (IN − δ∗G∗N )−1]

0k×1


 .

Theorem 5.2 include some important models as special cases. If there are no lag de-
pendent term and spatial term in model (1.1), i.e.,

yit = αi + x′itβ + λ′ift + eit,
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the present analysis indicates that under
√
N/T → 0,

√
T/N → 0 as well as other regularity

conditions, the asymptotic representation of β̂ − β is

√
NT (β̂ − β∗) = D−1

β

1√
NT

(
T∑
t=1

Ẋ ′tM̈
∗et −

T∑
t=1

T∑
s=1

Ẋ ′tM̈
∗esπ

∗
st

)
+ op(1),

where

Dβ = 1
NT





where we use [M ]ij to denote the (i, j)th element of M . So the marginal effects of xj(t−s)p
and ej(t−s) on yit can be estimated according to the above formulas by plug-in method. The
limiting distributions of the marginal effects can be easily calculated by the delta method
via Theorem 5.2.

Remark 5.3 The limiting variance and the bias term can be estimated by plug-in method.
More specifically, matrix D can be consistently estimated by

D̂ = 1
NT



tr(Ÿ ′̂̈MŸMF̂ ) + Φ̂ tr(Ÿ ′̂̈MẎ−1MF̂ ) tr(Ÿ ′̂̈MẊ1MF̂ ) · · · tr(Ÿ ′̂̈MẊkMF̂ )
tr(Ẏ ′−1

̂̈MŸMF̂ ) tr(Ẏ ′−1
̂̈MẎ−1MF̂ ) tr(Ẏ ′−1

̂̈MẊ1MF̂ ) · · · tr(Ẏ ′−1
̂̈MẊkMF̂ )

tr(Ẋ ′1
̂̈MŸMF̂ ) tr(Ẋ ′1

̂̈MẎ−1MF̂ ) tr(Ẋ ′1
̂̈MẊ1MF̂ ) · · · tr(Ẋ ′1

̂̈MẊkMF̂ )
...

...
... . . . ...

tr(Ẋ ′k
̂̈MŸMF̂ ) tr(Ẋ ′k

̂̈MẎ−1MF̂ ) tr(Ẋ ′k
̂̈MẊ1MF̂ ) · · · tr(Ẋ ′k

̂̈MẊkMF̂ )


where

F̂ = 1
N

(
Ẏ − δ̂Ẏ−1 − ρ̂Ÿ −

k∑
p=1

Ẋpβ̂p
)′

Σ̂−1
ee Λ̂

and Φ̂ = T · tr[(Ŝ2
N ) − 2

∑N
i=1 Ŝ

2
ii,N ] with ŜN = WN ĜN , ĜN = (IN − ρ̂WN )−1 and Ŝii,N

being the ith diagonal element of ŜN . In addition, the bias term ξ can be consistently
estimated by

b̂ = D̂−1

 1
NT tr[δ̂ŜN ĜN (IN − δ̂ĜN )−1] + 1

N tr[Λ̂′Ŝ◦′N Σ̂−1
ee Λ̂(Λ̂′Σ̂−1

ee Λ̂)−1]
1
NT tr[ĜN (IN − δ̂ĜN )−1]

0k×1

 .
Bias correction in the simulation uses this formula.

6 Discussions on spatial models with heteroskedasticity

Allowance of heteroskedasticy in pure spatial models is of theoretical and practical rel-
evance. As pointed out by Kelejian and Prucha (2010) and Lin and Lee (2010) among
others, if heteroskedasticity exists but homoskedasticity is imposed, the MLE generally is
inconsistent. In viewpoint of applied studies, assuming homoskedasticity seems too restric-
tive to be true. However, to the best of our knowledge, the MLE under heteroskedasticity
has not been investigated so far in the literature. In this section, we give some discussions
on this issue, which is of independent interest.

6.1 Dynamic spatial models

Consider the following dynamic spatial model,

yit = αi + ρ
N∑
j=1

wij,Nyjt + δy



The above model is special case of model (1.1). Under some regularity conditions stated in
Section 2, the analysis of Theorem 5.2 indicates that the MLE for (6.1) has the following
asymptotic representation:

√
NT (ω̂ − ω + υ1) = D−1

1
1√
NT


∑T
t=1(B̈t + Jt + S∗◦N et)′Σ∗−1

ee et∑T
t=1(Ḃt−1 + Jt−1)′Σ∗−1

ee et∑T
t=1 Ẋ

′
tΣ∗−1

ee et

+ op(1), (6.2)

where

D1 = 1
NT


∑T
t=1 Ÿ

′
t Σ∗−1

ee Ÿt + Φ
∑T
t=1 Ÿ

′
t Σ∗−1

ee Ẏt−1
∑T
t=1 Ÿ

′
t Σ∗−1

ee Ẋt∑T
t=1 Ẏ

′
t−1Σ∗−1

ee Ÿt
∑T
t=1 Ẏ

′
t−1Σ∗−1

ee Ẏt−1
∑T
t=1 Ẏ

′
t−1Σ∗−1

ee Ẋt∑T
t=1 Ẋ

′
tΣ∗−1

ee Ÿt
∑T
t=1 Ẋ

′
tΣ∗−1

ee Ẏt−1
∑T
t=1 Ẋ

′
tΣ∗−1

ee Ẋt

 ,
with Φ defined the same as in Theorem 5.2 and

υ1 = D−1
1

 1
NT tr[δ∗S∗NG∗N (IN − δ∗G∗N )−1]

1
NT tr[G∗N (IN − δ∗G∗N )−1]

0k×1

 .
Given the above asymptotic representation, invoking the central limiting theorem for
quadratic form (Kelejian and Prucha (2001), Giraitis and Taqqu (1998)), we have

√
NT (ω̂ − ω∗ + υ1) d−→ N

(
0,
[

plim
N,T→∞

D1
]−1)

.

6.2 Spatial panel data models with SAR disturbances

Another interesting spatial model, which receive much attention in practice, is spatial panel
data model with SAR disturbances, i.e.,

Yt = α+ ρWNYt +Xtβ + ut;
ut = %MNut + et.

(6.3)

whereMN is another spatial weights matrix. Lee and Yu (2010) make a rigorous analysis for
the ML estimation of (6.3) under the assumption that eit is cross-sectionally homoskedastic.
Using the method in this paper to deal with high dimensional variance parameters, ¯ we
can extend Lee and Yu’s analysis to heteroskedasticity. For ease of exposition, we further
introduce the following notations. Let

F = MNS
∗
N (IN−%∗MN )−1, G = (IN−%∗MN )S∗N (IN−%∗MN )−1, H = MN (IN−%∗MN )−1;

Pt = (IN − %∗MN )WN Ẏt, Qt = MN [(IN − ρ∗WN )Ẏt − Ẋtβ
∗], Rt = (IN − %∗MN )Ẋt.

Define the (k + 2)× (k + 2) matrix D2 as

D2 = 1
NT


∑T
t=1 P ′tΣ−1

ee Pt + ς1
∑T
t=1 P ′tΣ−1

ee Qt + ς2
∑T
t=1 P ′tΣ−1

ee Rt∑T
t=1Q′tΣ−1

ee Pt + ς2
∑T
t=1Q′tΣ−1

ee Qt + ς3
∑T
t=1Q′tΣ−1

ee Rt∑T
t=1R′tΣ−1

ee Pt
∑T
t=1R′tΣ−1

ee Qt
∑T
t=1R′tΣ−1

ee Rt


¯The method to deal with high dimensional variance parameters σ2

i is as follows: First show 1
N

∑N

i=1(σ̂2
i−

σ2
i )2 = op(1), see Proposition 5.1; then derive its convergence rate, see Propositions B.4 and B.6; then use

this result to show that the magnitude of the difference between the term involving Σ̂ee and the term
involving Σee is asymptotically negligible.
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with ς1 = T [tr(G2)−2tr(G ◦G)], ς2 = T [tr(F)−2tr(G ◦H)] and ς3 = T [tr(H2)−2tr(H◦H)],
where “◦” denotes the Hadamard product.

Under some regularity conditions, we can show that the MLE for ω = (ρ, %, β′)′ in (6.3)
under cross sectional heteroskedasticity has the following asymptotic representation,

√
NT (ω̂−ω∗) = D−1

2
1√
NT


∑T
t=1[β∗′Ẋ ′tS∗′N (IN − %∗MN )′ + e′tG◦′]Σ∗−1

ee et∑T
t=1 e

′
tH◦′Σ∗−1

ee et∑T
t=1 Ẋ

′
t(IN − %∗MN )′Σ∗−1

ee et

+op(1), (6.4)

where G◦ and H◦ are defined similarly as S∗◦N . Given the above result, invoking the central
limit theorem for quadratic form, we have

√
NT (ω̂ − ω) d−→ N

(
0,
[

plim
N,T→∞

D2
]−1)

.

6.3 Homoskedasticity versus heteroskedasticity

It is seen from the above that the limiting variance of the MLE is not a sandwich form.
This result contrasts with the existing results in the literature such as Yu et al. (2008) and
Lee and Yu (2010), in which the limiting variance of the MLE has a sandwich formula.
The reason for the difference is the heteroskedasticity estimation. In the present paper we
allow cross-sectional heteroskedasticity, while Yu et al. (2008) assume homoskedasticity.
Under heteroskedasticity, the asymptotic expression does not involve e2

it, as seen in (6.2)
and (6.4). But under homoskedasticity, the situation is different. Still consider model
(6.1). If homoskedasticity is assumed and is imposed in estimation (let σ∗2 = E(e2

it)), the
asymptotic expression for the MLE is

√
NT (ω̃−ω∗+υ2) = D−1

3
1√

NTσ∗2


∑T
t=1 e

′
tS
∗◦′
N et +

∑T
t=1 J

′
tet +

∑T
t=1 B̈

?′
t et + ϑ∑T

t=1 Ḃ
?′
t−1et +

∑T
t=1Q

′
t−1et∑T

t=1 Ẋ
′
tet

+op(1),

where

ϑ =
N∑
i=1

T∑
t=1

[
S∗ii,N −

1
Ntr(S∗N )

]
(e2
it − σ∗2), B?

t =
∞∑
l=0

(δ∗G∗N )lXt−lβ
∗, B̈?

t = WN Ḃ
?
t ,

υ2 = D−1
3

[ 1
NTtr
(
δ∗S∗NG

∗
N (IN − δ∗G∗N )−1

)
,

1
NTtr
(
G∗N (IN − δ∗G∗N )−1

)
, 01×k

]′
,

and

D3 = 1
NTσ∗2


∑T
t=1 Ÿ

′
t Ÿt + Tσ∗2{tr(S∗2N )− 2

N [tr(S∗N )]2}
∑T
t=1 Ÿ

′
t Ẏt−1

∑T
t=1 Ÿ

′
t Ẋt∑T

t=1 Ẏ
′
t−1Ÿt

∑T
t=1 Ẏ

′
t−1Ẏt−1

∑T
t=1 Ẏ

′
t−1Ẋt∑T

t=1 Ẋ
′
tŸt

∑T
t=1 Ẋ

′
tẎt−1

∑T
t=1 Ẋ

′
tẊt


From the above, we can see that the asymptotic expression under the homoskedasticity
involves e2

it. So the limiting variance of ω̃ − ω∗ will depend on the kurtosis of eit. Be-
cause D3 does not depend on the kurtosis, the limiting variance of ω̃ − ω∗ has a sandwich
formula. In contrast, the MLE under heteroskedasticity has a limiting variance not of a
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sandwich form, regardless of normality. The same phenomenon also occurs for the spa-
tial panel data models with SAR disturbances, see Lee and Yu (2010) for the asymptotic
result of the MLE under homoskedasticity. This results is interesting. Thus estimating
heteroskedasticity is desirable from two considerations: the limiting distribution is robust
to the underlying distributions; it avoids potential inconsistency when homoskedasticity is
incorrectly imposed.

7 Finite sample properties

In this section, we run Monte Carlo simulations to investigate the finite sample properties
of the MLE. The data are generated according to

yit = αi + ρ
N∑
j=1

wij,Nyjt + δyit−1 + xit1β1 + xit2β2 + λ′ift + eit

with (ρ, δ, β2, β2) = (0.5, 0.4, 1, 2). The number of factors is fixed to 2. The explanatory
variable xitp is generated according to

xitp =
[
(λi + γip)′ft + uitp

]
1
[
(λi + γip)′ft + uitp ≥ −3.5

]
for p = 1, 2. All the elements of αi, λi, ft, γip and uitp are all generated independently from
N(0, 1). The way to generate the explanatory variables here is similar as in Moon and
Weidner (2013). To generate the errors and heteroskedasticity, we consider the method
similar as in Bai and Li (2014b). More specifically, we set eit =

√
ψiεit where ψi is defined

as
ψi = 0.5 + 1− νi

νi
λ′iλi,

where νi is drawn independently from U [0.2, 0.8]. The error εit is equal to (χ2
2−2)/2, where

χ2
2 denotes the chi-squared distribution with two degrees of freedom, which is normalized

to zero mean and unit variance.
The generated data exhibit heteroskedasticity. The generated xit does not have a factor

structure and is correlated with the factors and factor loadings, and the two regressors xit1
and xit2 are also correlated; the errors are non-normal and skewed.

The spatial weights matrices generated in the simulation are similar to Kelejian and
Prucha (1999) and Kapoor et al. (2007). More specifically, all the units are arranged in a
circle and each unit is affected only by the q units immediately before it and immediately
after it with equal weight. Following Kelejian and Prucha (1999), we normalize the spatial
weights matrix by letting the sum of each row be equal to 1 (so the weight is 1

2q ) and call
this specification of spatial weights matrix “q ahead and q behind.”

Adapting a criterion in Bai and Li (2014b), the number of factors is determined by

r̂ = argmin
0≤m≤rmax

IC(m)

with

IC(m) = 1
2N

N∑
i=1

ln |(σ̂mi )2| − 1
N

ln |IN − ρ̂mWN |+m
N + T

2NT ln[min(N,T )].
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and

(σ̂mi )2 = 1
T

T∑
t=1

(ẏit − ρ̂mÿit − δ̂mẏit−1 − ẋ′itβ̂ − λ̂m′i f̂mt )2,

where the hat symbols with superscript “m” denotes the MLE when the number of factors
is set to m. We set rmax = 4.

The following four tables present the simulation results from 1000 repetitions under
the combinations of N = 100, 200, 300 and T = 50, 100, 150. Biases and root mean square
errors (RMSE) are both computed to measure the performance. In all the simulations,
the number of factors can be correctly estimated with probability almost one. The first
two tables report the performance of the MLE before and after the bias correction under
“1 ahead and 1 behind” spatial weights matrix. From Table 1, we see that the MLE are
consistent. As the sample size becomes larger, the RMSEs of the MLE decrease stably.
However, we also find that the ratio of the bias relative to the RMSE for the MLE of δ is
considerably large, the ratio for ρ, albeit not as large as δ, is still pronounced, especially
when N/T is large. This causes problems in statistical inference. We then investigates
the performance of the bias-corrected MLE. From Table 2, we see that the bias-correct
estimator performs well. The biases of the original estimators have been effectively reduced.
The next two tables report the performance of the MLE under ‘3 ahead and 3 behind”
spatial weights matrix. The simulation results are similar as the case under ‘1 ahead and
1 behind” weights matrix. So we do not repeat the detailed analysis.

Table 1: The performance of the MLE before bias correction
with “1 ahead and 1 behind” spatial weights matrix

N T
ρ δ β1 β2

Bias RMSE Bias RMSE Bias RMSE Bias RMSE
100 50 0.0007 0.0043 -0.0018 0.0042 0.0012 0.0160 -0.0001 0.0162
100 100 0.0002 0.0030 -0.0007 0.0027 0.0005 0.0113 0.0002 0.0109
100 150 0.0002 0.0023 -0.0006 0.0021 0.0002 0.0089 0.0002 0.0086
200 50 0.0008 0.0030 -0.0019 0.0031 -0.0003 0.0106 -0.0001 0.0110
200 100 0.0005 0.0021 -0.0010 0.0020 -0.0003 0.0077 -0.0004 0.0080
200 150 0.0003 0.0017 -0.0007 0.0015 -0.0001 0.0063 -0.0002 0.0064
300 50 0.0010 0.0026 -0.0020 0.0029 -0.0001 0.0091 -0.0010 0.0092
300 100 0.0004 0.0016 -0.0009 0.0016 -0.0004 0.0063 -0.0004 0.0063
300 150 0.0003 0.0013 -0.0007 0.0013 -0.0001 0.0050 0.0002 0.0051

Table 2: The performance of the MLE after bias correction
with “1 ahead and 1 behind” spatial weights matrix

N T
ρ δ β1 β2

Bias RMSE Bias RMSE Bias RMSE Bias RMSE
100 50 -0.0001 0.0042 0.0001 0.0037 0.0018 0.0160 0.0008 0.0162
100 100 -0.0002 0.0030 0.0002 0.0026 0.0008 0.0113 0.0007 0.0109
100 150 -0.0001 0.0023 0.0000 0.0020 0.0004 0.0089 0.0005 0.0086
200 50 -0.0000 0.0028 0.0000 0.0024 0.0003 0.0106 0.0008 0.0110
200 100 0.0000 0.0020 -0.0001 0.0017 -0.0000 0.0077 0.0001 0.0080
200 150 0.0000 0.0016 -0.0000 0.0014 0.0001 0.0063 0.0001 0.0064
300 50 0.0002 0.0023 -0.0001 0.0021 0.0005 0.0091 -0.0000 0.0091
300 100 -0.0000 0.0016 0.0001 0.0013 -0.0001 0.0063 0.0000 0.0062
300 150 -0.0000 0.0013 0.0000 0.0011 0.0001 0.0050 0.0002 0.0051
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Table 3: The performance of the MLE before bias correction
with “3 ahead and 3 behind” spatial weights matrix

N T
ρ δ β1 β2

Bias RMSE Bias RMSE Bias RMSE Bias RMSE
100 50 0.0012 0.0051 -0.0022 0.0045 -0.0002 0.0158 0.0010 0.0159
100 100 0.0006 0.0033 -0.0011 0.0029 0.0002 0.0106 0.0001 0.0103
100 150 0.0003 0.0027 -0.0007 0.0022 0.0001 0.0091 0.0000 0.0093
200 50 0.0013 0.0038 -0.0023 0.0036 -0.0002 0.0108 0.0001 0.0111
200 100 0.0006 0.0024 -0.0012 0.0022 -0.0000 0.0075 0.0002 0.0079
200 150 0.0004 0.0019 -0.0007 0.0016 0.0001 0.0063



Theorem 8.1 Under Assumptions A-E, F′, G-H, when N,T → ∞,
√
N/T → 0 and√

T/N → 0, we have

√
NT (φ̂− φ∗ + bφ) d−→ N

(
0,
[

plim
N,T→∞

Dφ

]−1)
,

where

Dφ = 1
NT

×


tr(Ÿ ′M̈∗Ÿ MF ∗)+Φ tr(Ÿ ′M̈∗Ẏ−1MF ∗) tr(Ÿ ′M̈∗Ÿ−1MF ∗) · · · tr(Ÿ ′M̈∗ẊkMF ∗)
tr(Ẏ ′−1M̈

∗Ÿ MF ∗) tr(Ẏ ′−1M̈
∗Ẏ−1MF ∗) tr(Ẏ ′−1M̈

∗Ÿ−1MF ∗) · · · tr(Ẏ ′−1M̈
∗ẊkMF ∗)

tr(Ÿ ′−1M̈
∗Ÿ MF ∗) tr(Ÿ ′−1M̈

∗Ẏ−1MF ∗) tr(Ÿ ′−1M̈
∗Ẋ1MF ∗) · · · tr(Ÿ ′−1M̈

∗ẊkMF ∗)
...

...
... . . . ...

tr(Ẋ ′kM̈∗Ÿ MF ∗) tr(Ẋ ′kM̈∗Ẏ−1MF ∗) tr(Ÿ ′−1M̈
∗Ẋ1MF ∗) · · · tr(Ẋ ′kM̈∗ẊkMF ∗)


with Φ defined the same as in Theorem 5.2 and

bφ = D−1
φ


1
NT tr[WN (δ∗G∗N + %∗G∗NMN )(IN − δ∗G∗N + %∗G∗NMN )−1G∗N ] + ς

1
NT tr[(IN − δ∗G∗N + %∗G∗NMN )−1G∗N ]

1
NT tr[MN (IN − δ∗G∗N + %∗G∗NMN )−1G∗N ]

0k×1


with ς = 1

N tr[Λ∗′S◦′NΣ∗−1
ee Λ∗(Λ∗′Σ∗−1

ee Λ∗)−1].

We use simulations to illustrate the performance of the MLE. The data are generated
according to (8.1) with (ρ, δ, %) = (0.2, 0.4, 0.3). The factors, factor loadings, errors and
heteroskedasticity are generated in the same way as in Section 7. Other prespecified pa-
rameters such as the number of factors, the number of regressors and the true values of β
are also the same. WN is a “3 ahead and 3 behind” weights matrix and MN is a “1 ahead
and 1 behind” one. For simplicity, the number of factors is assumed to be known. Tables
5 and 6 reports the simulation results based on 1000 repetitions.

Tables 5 and 6 show that the maximum likelihood method continue to perform well. The
RMSE decreases as the sample size becomes larger, implying that the MLE is consistent.
The bias has been effectively reduced after the bias correction.

Table 5: The performance of the MLE before bias correction

N T
ρ δ % β1 β2

Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE
100 50 0.0005 0.0068 -0.0025 0.0049 -0.0000 0.0043 0.0008 0.0155 0.0003 0.0157
100 100 0.0002 0.0044 -0.0012 0.0031 0.0001 0.0030 0.0005 0.0107 0.0001 0.0108
100 150 0.0004 0.0036 -0.0008 0.0024 -0.0000 0.0024 0.0004 0.0091 0.0002 0.0089
200 50 0.0009 0.0045 -0.0027 0.0040 0.0002 0.0029 0.0005 0.0110 -0.0007 0.0114
200 100 0.0004 0.0031 -0.0013 0.0024 0.0000 0.0020 -0.0001 0.0076 0.0002 0.0077
200 150 0.0004 0.0025 -0.0009 0.0018 0.0001 0.0017 0.0000 0.0060 -0.0004 0.0063
300 50 0.0010 0.0040 -0.0025 0.0034 -0.0001 0.0024 0.0001 0.0088 0.0001 0.0089
300 100 0.0004 0.0026 -0.0013 0.0021 0.0001 0.0017 -0.0000 0.0059 0.0003 0.0064
300 150 0.0004 0.0021 -0.0009 0.0016 -0.0000 0.0014 -0.0001 0.0049 0.0001 0.0051
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Table 6: The performance of the MLE after bias correction

N T
ρ δ % β1 β2

Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE
100 50 -0.0001 0.0067 -0.0001 0.0042 -0.0001 0.0043 0.0011 0.0155 0.0007 0.0157
100 100 -0.0002 0.0044 0.0000 0.0028 0.0001 0.0030 0.0006 0.0107 0.0003 0.0108
100 150 0.0001 0.0035 -0.0000 0.0023 -0.0001 0.0024 0.0005 0.0091 0.0003 0.0089
200 50 0.0003 0.0044 -0.0003 0.0029 0.0001 0.0029 0.0008 0.0110 -0.0003 0.0113
200 100 0.0000 0.0031 -0.0001 0.0020 -0.0001 0.0020 0.0000 0.0076 0.0003 0.0077
200 150 0.0001 0.0025 -0.0001 0.0016 0.0000 0.0017 0.0001 0.0060 -0.0003 0.0063
300 50 0.0004 0.0039 -0.0001 0.0024 -0.0002 0.0024 0.0004 0.0088 0.0006 0.0089
300 100 0.0001 0.0026 -0.0000 0.0017 0.0000 0.0017 0.0001 0.0059 0.0005 0.0065
300 150 0.0001 0.0020 -0.0000 0.0013 -0.0001 0.0014 -0.0000 0.0049 0.0002 0.0051

The present analysis can be also extended to allow SAR disturbance. Suppose et =
$MNet + εt, where ε satisfies Assumption C. Under this specification, et has weak cross
sectional correlation. To derive a tractable expression, pre-multiplying IN −$MN on both
sides of (3.1), we have

Yt = α?+ρWNYt+$MNYt−ρ$MNWNYt+δYt−1−$δMNYt−1+Xtβ−MNXtβ$+Λ?ft+εt

where α? = (IN −$MN )α and Λ? = (IN −$MN )Λ. Now we see that the above model is
similar as (3.1) except for high order spatial lags. The analysis of the MLE for the above
model is similar as that of (3.1).

9 Conclusion

This paper considers spatial panel data models with common shocks, in which the spatial
lag term is endogenous and the explanatory variables are correlated with the unobserv-
able common factors and factor loadings. The proposed maximum likelihood estimator
is capable of handling of both types of cross sectional dependence. The results make it
possible to determine which type of cross-section dependence or both are present. Het-
eroskedasticity is explicitly allowed. It is found that when heteroskedasticity is estimated,
the limiting variance of MLE is no longer of a sandwich form regardless of normality. We
provide a rigorous analysis for the asymptotic theory of the MLE, demonstrating its desir-
able properties. The Monte Carlo simulations show that the MLE has good finite sample
properties.
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